(0) Obligation:

Clauses:

p(0, 0).
p(s(X), X).
le(0, Y, true).
le(s(X), 0, false).
le(s(X), s(Y), B) :- le(X, Y, B).
minus(X, Y, Z) :- ','(le(X, Y, B), if(B, X, Y, Z)).
if(true, X, Y, 0).
if(false, X, Y, s(Z)) :- ','(p(X, X1), minus(X1, Y, Z)).

Query: minus(g,a,a)

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph DT10.

(2) Obligation:

Triples:

minusA(s(X1)) :- ','(lecB(false), minusA(X1)).
minusC(0, s(X1)) :- ','(lecD(0, false), minusA(X1)).
minusC(s(X1), s(X2)) :- ','(lecD(s(X1), false), minusC(X1, X2)).
leE(s(X1), s(X2), X3) :- leE(X1, X2, X3).
minusF(s(X1), 0, s(X2)) :- minusC(X1, X2).
minusF(s(X1), s(X2), X3) :- leE(X1, X2, X4).
minusF(s(X1), s(X2), s(X3)) :- ','(lecE(X1, X2, false), minusF(X1, s(X2), X3)).

Clauses:

minuscA(0) :- lecB(true).
minuscA(s(X1)) :- ','(lecB(false), minuscA(X1)).
minuscC(X1, 0) :- lecD(X1, true).
minuscC(0, s(X1)) :- ','(lecD(0, false), minuscA(X1)).
minuscC(s(X1), s(X2)) :- ','(lecD(s(X1), false), minuscC(X1, X2)).
lecE(0, X1, true).
lecE(s(X1), 0, false).
lecE(s(X1), s(X2), X3) :- lecE(X1, X2, X3).
minuscF(0, X1, 0).
minuscF(s(X1), 0, s(X2)) :- minuscC(X1, X2).
minuscF(s(X1), s(X2), 0) :- lecE(X1, X2, true).
minuscF(s(X1), s(X2), s(X3)) :- ','(lecE(X1, X2, false), minuscF(X1, s(X2), X3)).
lecD(0, true).
lecD(s(X1), false).
lecB(true).

Afs:

minusF(x1, x2, x3)  =  minusF(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
minusF_in: (b,f,f)
minusC_in: (b,f)
minusA_in: (f)
leE_in: (b,f,f)
lecE_in: (b,f,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

MINUSF_IN_GAA(s(X1), 0, s(X2)) → U8_GAA(X1, X2, minusC_in_ga(X1, X2))
MINUSF_IN_GAA(s(X1), 0, s(X2)) → MINUSC_IN_GA(X1, X2)
MINUSC_IN_GA(0, s(X1)) → U3_GA(X1, lecD_in_gg(0, false))
U3_GA(X1, lecD_out_gg(0, false)) → U4_GA(X1, minusA_in_a(X1))
U3_GA(X1, lecD_out_gg(0, false)) → MINUSA_IN_A(X1)
MINUSA_IN_A(s(X1)) → U1_A(X1, lecB_in_g(false))
U1_A(X1, lecB_out_g(false)) → U2_A(X1, minusA_in_a(X1))
U1_A(X1, lecB_out_g(false)) → MINUSA_IN_A(X1)
MINUSC_IN_GA(s(X1), s(X2)) → U5_GA(X1, X2, lecD_in_gg(s(X1), false))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → U6_GA(X1, X2, minusC_in_ga(X1, X2))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1, X2)
MINUSF_IN_GAA(s(X1), s(X2), X3) → U9_GAA(X1, X2, X3, leE_in_gaa(X1, X2, X4))
MINUSF_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X4)
LEE_IN_GAA(s(X1), s(X2), X3) → U7_GAA(X1, X2, X3, leE_in_gaa(X1, X2, X3))
LEE_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X3)
MINUSF_IN_GAA(s(X1), s(X2), s(X3)) → U10_GAA(X1, X2, X3, lecE_in_gag(X1, X2, false))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → U11_GAA(X1, X2, X3, minusF_in_gaa(X1, s(X2), X3))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → MINUSF_IN_GAA(X1, s(X2), X3)

The TRS R consists of the following rules:

lecD_in_gg(0, true) → lecD_out_gg(0, true)
lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)
lecB_in_g(true) → lecB_out_g(true)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)
lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)

The argument filtering Pi contains the following mapping:
minusF_in_gaa(x1, x2, x3)  =  minusF_in_gaa(x1)
s(x1)  =  s(x1)
minusC_in_ga(x1, x2)  =  minusC_in_ga(x1)
0  =  0
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
true  =  true
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
minusA_in_a(x1)  =  minusA_in_a
lecB_in_g(x1)  =  lecB_in_g(x1)
lecB_out_g(x1)  =  lecB_out_g(x1)
leE_in_gaa(x1, x2, x3)  =  leE_in_gaa(x1)
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUSF_IN_GAA(x1, x2, x3)  =  MINUSF_IN_GAA(x1)
U8_GAA(x1, x2, x3)  =  U8_GAA(x1, x3)
MINUSC_IN_GA(x1, x2)  =  MINUSC_IN_GA(x1)
U3_GA(x1, x2)  =  U3_GA(x2)
U4_GA(x1, x2)  =  U4_GA(x2)
MINUSA_IN_A(x1)  =  MINUSA_IN_A
U1_A(x1, x2)  =  U1_A(x2)
U2_A(x1, x2)  =  U2_A(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
LEE_IN_GAA(x1, x2, x3)  =  LEE_IN_GAA(x1)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
U11_GAA(x1, x2, x3, x4)  =  U11_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSF_IN_GAA(s(X1), 0, s(X2)) → U8_GAA(X1, X2, minusC_in_ga(X1, X2))
MINUSF_IN_GAA(s(X1), 0, s(X2)) → MINUSC_IN_GA(X1, X2)
MINUSC_IN_GA(0, s(X1)) → U3_GA(X1, lecD_in_gg(0, false))
U3_GA(X1, lecD_out_gg(0, false)) → U4_GA(X1, minusA_in_a(X1))
U3_GA(X1, lecD_out_gg(0, false)) → MINUSA_IN_A(X1)
MINUSA_IN_A(s(X1)) → U1_A(X1, lecB_in_g(false))
U1_A(X1, lecB_out_g(false)) → U2_A(X1, minusA_in_a(X1))
U1_A(X1, lecB_out_g(false)) → MINUSA_IN_A(X1)
MINUSC_IN_GA(s(X1), s(X2)) → U5_GA(X1, X2, lecD_in_gg(s(X1), false))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → U6_GA(X1, X2, minusC_in_ga(X1, X2))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1, X2)
MINUSF_IN_GAA(s(X1), s(X2), X3) → U9_GAA(X1, X2, X3, leE_in_gaa(X1, X2, X4))
MINUSF_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X4)
LEE_IN_GAA(s(X1), s(X2), X3) → U7_GAA(X1, X2, X3, leE_in_gaa(X1, X2, X3))
LEE_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X3)
MINUSF_IN_GAA(s(X1), s(X2), s(X3)) → U10_GAA(X1, X2, X3, lecE_in_gag(X1, X2, false))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → U11_GAA(X1, X2, X3, minusF_in_gaa(X1, s(X2), X3))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → MINUSF_IN_GAA(X1, s(X2), X3)

The TRS R consists of the following rules:

lecD_in_gg(0, true) → lecD_out_gg(0, true)
lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)
lecB_in_g(true) → lecB_out_g(true)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)
lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)

The argument filtering Pi contains the following mapping:
minusF_in_gaa(x1, x2, x3)  =  minusF_in_gaa(x1)
s(x1)  =  s(x1)
minusC_in_ga(x1, x2)  =  minusC_in_ga(x1)
0  =  0
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
true  =  true
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
minusA_in_a(x1)  =  minusA_in_a
lecB_in_g(x1)  =  lecB_in_g(x1)
lecB_out_g(x1)  =  lecB_out_g(x1)
leE_in_gaa(x1, x2, x3)  =  leE_in_gaa(x1)
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUSF_IN_GAA(x1, x2, x3)  =  MINUSF_IN_GAA(x1)
U8_GAA(x1, x2, x3)  =  U8_GAA(x1, x3)
MINUSC_IN_GA(x1, x2)  =  MINUSC_IN_GA(x1)
U3_GA(x1, x2)  =  U3_GA(x2)
U4_GA(x1, x2)  =  U4_GA(x2)
MINUSA_IN_A(x1)  =  MINUSA_IN_A
U1_A(x1, x2)  =  U1_A(x2)
U2_A(x1, x2)  =  U2_A(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
LEE_IN_GAA(x1, x2, x3)  =  LEE_IN_GAA(x1)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
U11_GAA(x1, x2, x3, x4)  =  U11_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 13 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LEE_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X3)

The TRS R consists of the following rules:

lecD_in_gg(0, true) → lecD_out_gg(0, true)
lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)
lecB_in_g(true) → lecB_out_g(true)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)
lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
true  =  true
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
lecB_in_g(x1)  =  lecB_in_g(x1)
lecB_out_g(x1)  =  lecB_out_g(x1)
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
LEE_IN_GAA(x1, x2, x3)  =  LEE_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LEE_IN_GAA(s(X1), s(X2), X3) → LEE_IN_GAA(X1, X2, X3)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LEE_IN_GAA(x1, x2, x3)  =  LEE_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LEE_IN_GAA(s(X1)) → LEE_IN_GAA(X1)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LEE_IN_GAA(s(X1)) → LEE_IN_GAA(X1)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSF_IN_GAA(s(X1), s(X2), s(X3)) → U10_GAA(X1, X2, X3, lecE_in_gag(X1, X2, false))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → MINUSF_IN_GAA(X1, s(X2), X3)

The TRS R consists of the following rules:

lecD_in_gg(0, true) → lecD_out_gg(0, true)
lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)
lecB_in_g(true) → lecB_out_g(true)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)
lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
true  =  true
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
lecB_in_g(x1)  =  lecB_in_g(x1)
lecB_out_g(x1)  =  lecB_out_g(x1)
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUSF_IN_GAA(x1, x2, x3)  =  MINUSF_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSF_IN_GAA(s(X1), s(X2), s(X3)) → U10_GAA(X1, X2, X3, lecE_in_gag(X1, X2, false))
U10_GAA(X1, X2, X3, lecE_out_gag(X1, X2, false)) → MINUSF_IN_GAA(X1, s(X2), X3)

The TRS R consists of the following rules:

lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
true  =  true
false  =  false
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUSF_IN_GAA(x1, x2, x3)  =  MINUSF_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSF_IN_GAA(s(X1)) → U10_GAA(X1, lecE_in_gag(X1, false))
U10_GAA(X1, lecE_out_gag(X1, false)) → MINUSF_IN_GAA(X1)

The TRS R consists of the following rules:

lecE_in_gag(s(X1), false) → lecE_out_gag(s(X1), false)
lecE_in_gag(s(X1), X3) → U21_gag(X1, X3, lecE_in_gag(X1, X3))
U21_gag(X1, X3, lecE_out_gag(X1, X3)) → lecE_out_gag(s(X1), X3)
lecE_in_gag(0, true) → lecE_out_gag(0, true)

The set Q consists of the following terms:

lecE_in_gag(x0, x1)
U21_gag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U10_GAA(X1, lecE_out_gag(X1, false)) → MINUSF_IN_GAA(X1)
    The graph contains the following edges 1 >= 1, 2 > 1

  • MINUSF_IN_GAA(s(X1)) → U10_GAA(X1, lecE_in_gag(X1, false))
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GA(s(X1), s(X2)) → U5_GA(X1, X2, lecD_in_gg(s(X1), false))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1, X2)

The TRS R consists of the following rules:

lecD_in_gg(0, true) → lecD_out_gg(0, true)
lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)
lecB_in_g(true) → lecB_out_g(true)
lecE_in_gag(0, X1, true) → lecE_out_gag(0, X1, true)
lecE_in_gag(s(X1), 0, false) → lecE_out_gag(s(X1), 0, false)
lecE_in_gag(s(X1), s(X2), X3) → U21_gag(X1, X2, X3, lecE_in_gag(X1, X2, X3))
U21_gag(X1, X2, X3, lecE_out_gag(X1, X2, X3)) → lecE_out_gag(s(X1), s(X2), X3)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
true  =  true
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
lecB_in_g(x1)  =  lecB_in_g(x1)
lecB_out_g(x1)  =  lecB_out_g(x1)
lecE_in_gag(x1, x2, x3)  =  lecE_in_gag(x1, x3)
lecE_out_gag(x1, x2, x3)  =  lecE_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUSC_IN_GA(x1, x2)  =  MINUSC_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GA(s(X1), s(X2)) → U5_GA(X1, X2, lecD_in_gg(s(X1), false))
U5_GA(X1, X2, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1, X2)

The TRS R consists of the following rules:

lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lecD_in_gg(x1, x2)  =  lecD_in_gg(x1, x2)
lecD_out_gg(x1, x2)  =  lecD_out_gg(x1, x2)
false  =  false
MINUSC_IN_GA(x1, x2)  =  MINUSC_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GA(s(X1)) → U5_GA(X1, lecD_in_gg(s(X1), false))
U5_GA(X1, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1)

The TRS R consists of the following rules:

lecD_in_gg(s(X1), false) → lecD_out_gg(s(X1), false)

The set Q consists of the following terms:

lecD_in_gg(x0, x1)

We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U5_GA(X1, lecD_out_gg(s(X1), false)) → MINUSC_IN_GA(X1)
    The graph contains the following edges 1 >= 1, 2 > 1

  • MINUSC_IN_GA(s(X1)) → U5_GA(X1, lecD_in_gg(s(X1), false))
    The graph contains the following edges 1 > 1

(27) YES